linear function - A recursive function is linear if it is of the formf x = if p x then q x else h f x where h is a "linear functional" which means that (1) for all functions, a, b c and some function ht h (if a then b else c) = if ht a then h b else h c Function ht is known as the "predicate transformer" of h. (2) If for some x, h (\ y . bottom) x /= bottom then for all g, ht g x = True. I.e. if h g x terminates despite g x not terminating then ht g x doesn't depend on g. See also linear argument. |

Browse

Lineal

Lineal measure

Lineal warranty

Lineality

Lineally

Lineament

Linear

Linear A

linear accelerator

linear address space

linear algebra

linear argument

linear assignment

Linear B

Linear differential equation

linear equation

**-- linear function --**

Linear Graph Notation

linear leaf

linear logic

linear map

linear measure

Linear numbers

linear operator

linear perspective

Linear problem

linear programming

linear regression

linear space

linear transformation

linear type

linear unit

Linear-shaped

Lineal measure

Lineal warranty

Lineality

Lineally

Lineament

Linear

Linear A

linear accelerator

linear address space

linear algebra

linear argument

linear assignment

Linear B

Linear differential equation

linear equation

Linear Graph Notation

linear leaf

linear logic

linear map

linear measure

Linear numbers

linear operator

linear perspective

Linear problem

linear programming

linear regression

linear space

linear transformation

linear type

linear unit

Linear-shaped