linear function

linear function - A recursive function is linear if it is of the form

f x = if p x then q x else h f x

where h is a "linear functional" which means that

(1) for all functions, a, b c and some function ht

h (if a then b else c) = if ht a then h b else h c

Function ht is known as the "predicate transformer" of h.

(2) If for some x,

h (\ y . bottom) x /= bottom


for all g, ht g x = True.

I.e. if h g x terminates despite g x not terminating then ht g x doesn't depend on g.

See also linear argument.
Lineal measure
Lineal warranty
Linear A
linear accelerator
linear address space
linear algebra
linear argument
linear assignment
Linear B
Linear differential equation
linear equation
-- linear function --
Linear Graph Notation
linear leaf
linear logic
linear map
linear measure
Linear numbers
linear operator
linear perspective
Linear problem
linear programming
linear regression
linear space
linear transformation
linear type
linear unit
Definitions Index: # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

About this site and copyright information - Online Dictionary Home - Privacy Policy